爱码网专注于资源免费下载

Python for Data Analysis PDF 下载

爱码网2024-04-13 21:57:35472PythonPythonforData Analysispdf下载
Python for Data Analysis PDF 下载-第1张图片 此部分为隐藏内容,请输入验证码后查看
验证码:


扫描右侧图片或微信搜索 “ Java技术分享屋 ” ,回复 “ 验证码 ” ,获取验证密码。
本资料仅供读者预览及学习交流使用,不能用于商业用途,请在下载后24小时内删除。如果喜欢,请购买正版!

一.资料图片

Python for Data Analysis PDF 下载-第2张图片

二.资料简介

Finding great data analysts is difficult. Despite the explosive growth of data in industries ranging from manufacturing and retail to high technology, finance, and healthcare, learning and accessing data analysis tools has remained a challenge. This pragmatic guide will help train you in one of the most important tools in the field - Python. Filled with practical case studies, Python for Data Analysis demonstrates the nuts and bolts of manipulating, processing, cleaning, and crunching data with Python. It also serves as a modern introduction to scientific computing in Python for data-intensive applications. Learn about the growing field of data analysis from an expert in the community. Learn everything you need to start doing real data analysis work with Python Get the most complete instruction on the basics of the "modern scientific Python platform" Learn from an insider who builds tools for the scientific stack Get an excellent introduction for novices and a wealth of advanced methods for experienced analysts

三.作者简介

Wes McKinney 资深数据分析专家,对各种Python库(包括NumPy、pandas、matplotlib以及IPython等)等都有深入研究,并在大量的实践中积累了丰富的经验。撰写了大量与Python数据分析相关的经典文章,被各大技术社区争相

转载,是Python和开源技术社区公认的权威人物之一。开发了用于数据分析的著名开源Python库——pandas,广获用户好评。在创建Lambda Foundry(一家致力于企业数据分析的公司)之前,他曾是AQR Capital Management的定量分析师。

四.资料目录

目录
前言 1
第1章 准备工作 5
本书主要内容 5
为什么要使用Python进行数据分析 6
重要的Python库 7
安装和设置 10
社区和研讨会 16
使用本书 16
致谢 18
第2章 引言 20
来自bit.ly的1.usa.gov数据 21
MovieLens 1M数据集 29
1880—2010年间全美婴儿姓名 35
小结及展望 47
第3章 IPython:一种交互式计算和开发环境 48
IPython基础 49
内省 51
使用命令历史 60
与操作系统交互 63
软件开发工具 66
IPython HTML Notebook 75
利用IPython提高代码开发效率的几点提示 77
高级IPython功能 79
致谢 81
第4章 NumPy基础:数组和矢量计算 82
NumPy的ndarray:一种多维数组对象 83
通用函数:快速的元素级数组函数 98
利用数组进行数据处理 100
用于数组的文件输入输出 107
线性代数 109
随机数生成 111
范例:随机漫步 112
第5章 pandas入门 115
pandas的数据结构介绍 116
基本功能 126
汇总和计算描述统计 142
处理缺失数据 148
层次化索引 153
其他有关pandas的话题 158
第6章 数据加载、存储与文件格式 162
读写文本格式的数据 162
二进制数据格式 179
使用HTML和Web API 181
使用数据库 182
第7章 数据规整化:清理、转换、合并、重塑 186
合并数据集 186
重塑和轴向旋转 200
数据转换 204
字符串操作 217
示例:USDA食品数据库 224
第8章 绘图和可视化 231
matplotlib API入门 231
pandas中的绘图函数 244
绘制地图:图形化显示海地地震危机数据 254
Python图形化工具生态系统 260
第9章 数据聚合与分组运算 263
GroupBy技术 264
数据聚合 271
分组级运算和转换 276
透视表和交叉表 288
示例:2012联邦选举委员会数据库 291
第10章 时间序列 302
日期和时间数据类型及工具 303
时间序列基础 307
日期的范围、频率以及移动 311
时区处理 317
时期及其算术运算 322
重采样及频率转换 327
时间序列绘图 334
移动窗口函数 337
性能和内存使用方面的注意事项 342
第11章 金融和经济数据应用 344
数据规整化方面的话题 344
分组变换和分析 355
更多示例应用 361
第12章 NumPy高级应用 368
ndarray对象的内部机理 368
高级数组操作 370
广播 378
ufunc高级应用 383
结构化和记录式数组 386
更多有关排序的话题 388
NumPy的matrix类 393
高级数组输入输出 395
性能建议 397
附录A Python语言精要 401

本文链接:https://www.icode1024.com/python/416.html

网友评论